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We demonstrate the light pulse combining and pulse compression using a continuous-discrete nonlinear system
implemented in multi-core fiber (MCF). It is shown that the pulses initially injected into all cores of a ring
MCF are combined by nonlinearity into a few cores with simultaneous pulse compression. In 20-core MCF we
demonstrate combining of 77% of energy into one core with pulse compressions over 14x. We also demonstrate a
suggested scheme that is unsensitive to the phase perturbations. Nonlinear spatio-temporal pulse manipulation
in multi-core fibers can be exploited for various applications including pulse compression, switching and
combining. c� 2014 Optical Society of America

OCIS codes: (190.4360) Nonlinear optics, devices; (060.4370) Nonlinear optics, fibers.

Optical multi-core fibers (MCFs) have recently at-
tracted a great deal of attention in the context of spatial-
division multiplexing for high capacity optical communi-
cations (see e.g. [1,2] and references therein). In conven-
tional optical communications the nonlinear e↵ects that
occur during signal propagation in a fiber are somewhat
undesirable.

However, at high signal power, developed MCFs can
be also considered as nonlinear discrete physical sys-
tem, interesting for both fundamental science [3, 4] and
for practical applications as a nonlinear photonic de-
vices [5–7]. In particular, nonlinear induced collapse
(self-focusing, blow-up) of the initial wave packet can
be used for pulse compression [8]. The theoretical back-
ground for such an approach in the case of non-linear
discrete optical arrays has been developed in [6, 7]. It
has been shown in [6, 7] that wave collapse leads to the
localization of energy in a small number of cores with
simultaneous amplification and compression.

The nonlinear dynamics in MCFs has an interest-
ing link with the light bullets (LBs) proposed in [9].
The light bullets in waveguide arrays have been recently
demonstrated and studied in [10, 11]. The light bullets
studied in [10, 11] are discrete optical spatio-temporal
solitons. Discrete-continuous system such as the MCFs
may prevent the wave collapse, typical for light dynam-
ics in multi-dimensional continuous non-linear medium
[12, 13]. In this Letter, we demonstrate that nonlinear
energy localisation in MCFs may be used for pulse com-
bining and compression. We consider the optical MCFs
with circular ring symmetry of their cores shown in Fig-
ure 1. Note that many of the obtained results are generic
and are applicable to various other MCF configurations.

The propagation of light down MCFs can be approx-
imately (neglecting polarisation characteristics for the
sake of clarity) described as a superposition of modes

localised at each core:

E(x, y, z, t) =
X

k

Ak(z, t)Fk(x�xk, y�yk)e
i(�kz�!t)+cc,

(1)
where Fk is the spatial mode structure and Ak is the
envelope of the electromagnetic field in k-th core. In
the limit of a weak coupling approximation one can de-
rive a system of equations for the envelopes Ak, i.e., the
continuous-discrete nonlinear Schrodinger equation [14]:
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here k = 1, ..., N , �k
2 is the group-velocity dispersion

parameter for the mode k, �k is the Kerr parameter,
and the Ckm are the coupling coe�cients between the
cores.
System (2) can be simplified for the identical cores as

discussed in [6, 7]. Taking into account the most impor-
tant physical e↵ects we can simplify the analysis with
the following assumption

Ckk = C1 > 0, Ck,k+1 = C > 0 (3)

and neglect all other coupling terms. To for sake of clar-
ity we consider in what follows �k

2 = �2, �k = � (k =
1, ..., N), however, results can be easily extended to more
general cases.
It is convenient to introduce normalized variables:

Ak =
q

C
� Uke

i(2+C1/C)z0
, where z0 = z/L, L = 1/C,

t0 = t/T , T 2 = ��2/(2C). The dimensionless equations
(omitting the primes) read:
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The system (4) is the Hamiltonian one
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Figure 1. Schematic depiction of considered multi-core fiber
– waveguide with cores arranged in a circle.
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The system (4) conserves H and total power (normalized
by C/�)

Pt =
NX

k=1

1Z

�1

|Uk(z, t)|2dt. (7)

To understand qualitatively the evolution of pulses in-
jected into an MCF consider first a system with large
N and smooth intensity distribution, having only small
changes between neighboring cores. In this case we can
derive the continuous version of (4) for U(k, t, z)
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The eq. (8) is equivalent to the nonlinear Schroedinger
equation (NLSE) describing the self-focusing of light in a
nonlinear media. If the power at the entrance to the MCF
exceeds the critical value Pcr = 11.69, making H < 0,
the intensity distribution is self-compressed over k and
t. We can expect that the injected MCF pulses distrib-
uted over the cores with smooth maxima will be focused
into a few cores around the maxima with simultaneous
pulse compression. When the energy is concentrated into
a few cores the discreteness of the cores arrests further
compression.

This scenario has been verified via numerical experi-
ments. In our modelling we have used the same Gaussian
pulses in each core, but slightly perturbed the amplitudes
from core to core to initiate an instability:

Uk =
p
P exp

✓
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2⇡k

N

◆�
. (10)

The corresponding distribution of total power Pt over the
cores is symmetrical with respect to the Nth core and

Figure 2. The evolution of input Gaussian pulses (10) with
parameters P = 0.61, ⌧ = 1.5 is shown for the third core
where most of energy is concentrated after propagation. Also
shown is the fourth core as an example of dynamics in a
neighboring cores of the 6-core fiber. Note the di↵erent power
scales for the third and fourth cores.

has one maximum at k = N , with symmetry between
k = l and k = N � l. As a result, below we will plot
the information for only half of cores. In the numerical
computations we used the split-step Fourier method with
the Pade approximation with scaling and squaring for
matrix exponent (see [15], [16]).
To have compression of the input light distribution as

a whole, it is necessary to have at the input U ⇠
p
P ⇠

2/N ⇠ 1/⌧ . We used this simple guide rule to determine
our choice of the initial pulse width and energy.
As can be seen from (10), the pulse amplitudes are

perturbed by no more than 3%. The increase of the ini-
tial modulation (if it is still small) does not e↵ect the
qualitative behaviour, but does accelerate the process
development.
The evolution of Gaussian pulses (10) forN = 6 is pre-

sented on the Fig.2. One can see the combining of almost
all of the injected energy into one of the pulses with si-
multaneous pulse compression. For the specific case pre-
sented in Fig.2 with parameters P = 0.61, ⌧ = 1.5 we
observed the peak power increase to be 30.6x, with pulse
duration compressions of 6.6x. The maximum compres-
sion is reached at z = z0 = 33.3. One can see that at
z0 = 33.3, ⇠ 82.8% of the initial energy is concentrated
into a single core. Further propagation leads to periodic
oscillations of the light intensity. This is the result of the
conservation of the Hamiltonian H, that is in general dif-
ferent at the input from the asymptotic value at steady
state. Therefore, part of the energy should go into oscil-
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Figure 3. (a) The dynamic of the peak powers (upper pic-
tures) and pulse widths (bottom pictures) of input Gaussian
pulses (10) with parameters P = 0.61, ⌧ = 1.5 in 3–6-th
cores of 6-core MCF (a and c) and pulses with parameters
P = 0.08035, ⌧ = 3.85 in 17–20 cores for 20-core MCF (b
and d). Graphs (c) and (d) show the dynamics of full width
at half maximum (FWHM) of corresponding pulses.

lations. Important to note is that the energy continues to
be localized in few cores forming nonstationary light bul-
lets. In terms of practical applications, the input power
and the length of the MCF device should be carefully de-
signed to achieve the maximum pulse compression and
energy combining.

The increase of the initial modulation depth from 0.03
to 0.3 qualitatively doesn’t change the evolution, peak
intensity or pulse compression but reduce z0 to 3.9. The
evolution of peak amplitudes and pulse durations in dif-
ferent cores is presented on Fig.3.

A very important point is that compression does not
degrade the beam shape. The initial pulse profile and
waveform after compression are presented on Fig.4. One
can see that small shape deformations are confined to
the wings only when the intensity is less then 0.6% of
the peak.

The calculation for N = 20 with optimizing parame-
ters P = 0.08035, ⌧ = 3.85 results in similar behaviour
(see Fig.3). In this case the intensity is lower to sup-
press the development of small scale perturbations and
the peak compression takes place at the longer distance
z0 = 115.2. Increasing the number of the cores reduces
the pulse width and increases intensity. For a 20-core
MCF the pulse width compression factor is around 17.4x,
while the peak power in the compressed pulse is in-
creased by 206x. The percentage of the power combined
in one core is 72.7%.

Fig. 5 depicts spatial density distribution of the to-
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Figure 4. The temporal profiles after propagation of input
Gaussian pulses (10) (dashed line) with initial parameters
P = 0.61, ⌧ = 1.5 and the pulse at the compression point
(solid line) in: the third (a), in fourth core (c), for the 6-
core MCF. Graphs (b) and (d) show similar temporal profiles
for pulses in 20-th core (b) and 19-th core (d) with initial
parameters P = 0.08035, ⌧ = 3.85 for the 20-core MCF.

tal power Pt over the cores at the distance of maximum
compression for the 6-core and 20-core MCF. For large
N , the evolution leading to compression happens at large
distance and, in general, we may expect losses to occur
during the compression when the power is in excess of
Pcr. In the asymptotic regime the collapse is easier to
arrest and discreteness is more important. One can see
that at the peak of compression, the ratio of the peak in-
tensity to the intensity in the neighboring cores is higher
for N = 6 than for N = 20 as seen in Fig. 5.
Thus, we have demonstrated that one can e↵ectively

combine the pulse energy in MCFs. This type of non-
linear combining is essentially di↵erent from currently
popular schemes relying on linear beam combining [17].
When using linear beam combining it is critically im-
portant to control the separate beams phases. In our
nonlinear combining scheme, the nonlinear interaction
self-organizes the process of combining and the phase
and pulse shape perturbations at the MCF input are not
very important. To demonstrate this feature we consider
the evolution of the pulses with random phase variations:

Ũk = Uk exp [�iC�] , k = 1..N, (11)

where C� = �f(k) with f(k) being the pseudo-random
function with absolute values varying between 0 and 1.
More specifically, we model f(k) as f(k) = cos(5000k).
The modeling demonstrates that the results are not

very sensitive to the phase variations. Up to � = 0.8 the
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Figure 5. The density distribution of total power Pt over the
cores at the distance z = 33.3 (a) and z = 115.2 (b) - the
maximum compression points corresponding to propagation
along 6-cores (a) and 20-cores fiber (b) of Gaussian pulses
(10).

qualitative picture of the compression doesn’t change,
the compressed pulse is smooth, the percentage of the
power combined into one core doesn’t change much, and
the compression ratio is almost constant. For example,
for � = 0.7, N = 20 the pulse duration compression is
about 16.8x, the peak power increases 202.5 times and
about 75.6% of all initial power is concentrated into the
first core. Notice, that random initial phases lead to a
switch of the core where all power is concentrated. More
sensitive to the phase fluctuations is the length of com-
pression. For instance, for � = 0 and N = 20 the dis-
tance z0 = 115.2, while for � = 0.7 it is 56.1. In prac-
tice, an MCF has some fixed length and phase variations
can e↵ect the combining-compression performance. This
problem can be fixed in great extent with deeper ini-
tial modulation of the intensity distribution in the cores
making the system more robust to phase fluctuations.
Increasing of the modulation parameter from 0.03 to 0.3
in formula (10) significantly reduces the spread of com-
pression distances at di↵erent delta. For example, for a
20-core MCF z0 = 28.6 when � = 0, and it reaches a
minimum z0 = 26.1 at � = 0.5.

Although our results are general and can be scaled
to various system designs, let us make some numerical
estimates for typical existing MCFs. Consider �2 = -20
ps2/km and � = 1.5 W�1km�1. The coupling coe�cient
parameter varies depending on the particular fiber. For
telecom application the coupling must be low and for
typical fibers C = 15.7 km�1 as in [14]. Coming back
to the dimensional variable we see that the unit of pulse
duration T , T 2 = ��2/(2C), is about 0.8 psec and typ-
ical the length L = 1/C ⇠ 64 m. It means that our
compressor must have a length of a few hundred meters
and can compress the pulse up to about 100 femtosec-
onds. For our nonlinear compressor one can build MCF
with more and closer spaced cores and so with a larger
coupling coe�cient C. If C increases up to C ⇠ 1/m
the length of compressor reduced to the few meters and
T is reduced to 0.1 psec and the compressions to pulse
durations of ⇠ 10 femtosecond may be possible, though
the model should be modified in this case.

Qualitatively, we anticipate that the ring configura-
tion may be not the optimal scheme for maximum com-

pression. The considered ring design (e↵ectively one-
dimensional in k) is equivalent of the 2D system in the
continuous limit. Using two-dimensional core distribu-
tion designs we will have in a corresponding continuous
limit an e↵ective 3D NLSE with strongly collapsing fea-
tures. It may be more practical to implement the pulses
combining and compression in such configurations.
In conclusion, we have examined the pulse combining

and compression in a ring MCF configuration. We have
demonstrated the e↵ective spatial focusing of energy to
only few cores through pre-designed instability of initial
spatio-temporal light distribution. Further optimisation
of the proposed technique in various MCFs can lead to
more e�cient pulse compression and pulse combining.
This work was supported by the Russian Science Foun-

dation (Grant No. 14-21-00110) and by the European
O�ce of Aerospace Research and Development (grant
FA9550-14-1-0305) (work of S.K.T.). The work was par-
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ment of Energy by Lawrence Livermore National Labo-
ratory under Contract DE-AC52-07NA27344.
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